Army’s brain-like computers moving closer to cracking codes:U.S. Army Research Laboratory scientists have discovered a way to leverage emerging brain-like computer architectures for an age-old number-theoretic problem known as integer factorization.

By mimicking the brain functions of mammals in computing, Army scientists are opening up a new solution space that moves away from traditional computing architectures and towards devices that are able to operate within extreme size-, weight-, and power-constrained environments.

“With more computing power in the battlefield, we can process information and solve computationally-hard problems quicker,” said Dr. John V. “Vinnie” Monaco, an ARL computer scientist. “Programming the type of devices that fit this criteria, for example, brain-inspired computers, is challenging, and cracking cryptocodes is just one application that shows we know how to do this.”

The problem itself can be stated in simple terms. Take a composite integer N and express it as the product of its prime components. Most people have completed this task at some point in grade school, often an exercise in elementary arithmetic. For example, 55 can be expressed as 5*11 and 63 as 3*3*7. What many didn’t realize is they were performing a task that — if completed quickly enough for large numbers — could break much of the modern day internet.

**Related News:Secretary General welcomes the Emir of Qatar to NATO Headquarters. Read More…**

U

“With more computing power in the battlefield, we can process information and solve computationally-hard problems quicker,” said t one application that shows we know how to do this.”

The problem itself can be stated in simple terms. Take a composite integer N and express it as the product of its prime components. Most people have completed this task at some point in grade school, often an exercise in elementary arithmetic. For example, 55 can be expressed as 5*11 and 63 as 3*3*7. What many didn’t realize is they were performing a task that — if completed quickly enough for large numbers — could break much of the modern day internet.